原创

java高并发系列 - 第28天:实战篇,微服务日志的伤痛,一并帮你解决掉

这是java高并发系列第28篇文章。

环境:jdk1.8。

本文内容

  1. 日志有什么用?
  2. 日志存在的痛点?
  3. 构建日志系统

日志有什么用?

  1. 系统出现故障的时候,可以通过日志信息快速定位问题,修复bug,恢复业务
  2. 提取有用数据,做数据分析使用

本文主要讨论通过日志来快速定位并解决问题。

日志存在的痛点

先介绍一下多数公司采用的方式:目前比较流行的是采用springcloud(或者dubbo)做微服务,按照业拆分为多个独立的服务,服务采用集群的方式部署在不同的机器上,当一个请求过来的时候,可能会调用到很多服务进行处理,springcloud一般采用logback(或者log4j)输出日志到文件中。当系统出问题的时候,按照系统故障的严重程度,严重的会回退版本,然后排查bug,轻的,找运维去线上拉日志,然后排查问题。

这个过程中存在一些问题:

  1. 日志文件太大太多,不方便查找
  2. 日志分散在不同的机器上,也不方便查找
  3. 一个请求可能会调用多个服务,完整的日志难以追踪
  4. 系统出现了问题,只能等到用户发现了,自己才知道

本文要解决上面的几个痛点,构建我们的日志系统,达到以下要求:

  1. 方便追踪一个请求完整的日志
  2. 方便快速检索日志
  3. 系统出现问题自动报警,通知相关人员

构建日志系统

按照上面我们定的要求,一个个解决。

方便追踪一个请求完整的日志

当一个请求过来的时候,可能会调用多个服务,多个服务内部可能又会产生子线程处理业务,所以这里面有两个问题需要解决:

  1. 多个服务之间日志的追踪
  2. 服务内部子线程和主线程日志的追踪,这个地方举个例子,比如一个请求内部需要给10000人发送推送,内部开启10个线程并行处理,处理完毕之后响应操作者,这里面有父子线程,我们要能够找到这个里面所有的日志

需要追踪一个请求完整日志,我们需要给每个请求设置一个全局唯一编号,可以使用UUID或者其他方式也行。

多个服务之间日志追踪的问题:当一个请求过来的时候,在入口处生成一个trace_id,然后放在ThreadLocal中,如果内部设计到多个服务之间相互调用,调用其他服务的时,将trace_id顺便携带过去。

父子线程日志追踪的问题:可以采用InheritableThreadLocal来存放trace_id,这样可以在线程中获取到父线程中的trace_id。

所以此处我们需要使用InheritableThreadLocal来存储trace_id。

关于ThreadLocal和InheritableThreadLocal可以参考:ThreadLocal、InheritableThreadLocal(通俗易懂)

如果自己使用了线程池处理请求的,由于线程池中的线程采用的是复用的方式,所以需要对执行的任务Runable做一些改造,如代码:

public class TraceRunnable implements Runnable {
    private String tranceId;
    private Runnable target;

    public TraceRunnable(Runnable target) {
        this.tranceId = TraceUtil.get();
        this.target = target;
    }

    @Override
    public void run() {
        try {
            TraceUtil.set(this.tranceId);
            MDC.put(TraceUtil.MDC_TRACE_ID, TraceUtil.get());
            this.target.run();
        } finally {
            MDC.remove(TraceUtil.MDC_TRACE_ID);
            TraceUtil.remove();
        }
    }

    public static Runnable trace(Runnable target) {
        return new TraceRunnable(target);
    }
}

需要用线程池执行的任务使用TraceRunnable封装一下就可以了。

TraceUtil代码:

public class TraceUtil {

    public static final String REQUEST_HEADER_TRACE_ID = "com.ms.header.trace.id";
    public static final String MDC_TRACE_ID = "trace_id";

    private static InheritableThreadLocal<String> inheritableThreadLocal = new InheritableThreadLocal<>();

    /**
     * 获取traceid
     *
     * @return
     */
    public static String get() {
        String traceId = inheritableThreadLocal.get();
        if (traceId == null) {
            traceId = IDUtil.getId();
            inheritableThreadLocal.set(traceId);
        }
        return traceId;
    }

    public static void set(String trace_id) {
        inheritableThreadLocal.set(trace_id);
    }

    public static void remove() {
        inheritableThreadLocal.remove();
    }

}

日志输出中携带上trace_id,这样最终我们就可以通过trace_id找到一个请求的完整日志了。

方便快速检索日志

日志分散在不同的机器上,如果要快速检索,需要将所有服务产生的日志汇集到一个地方。

关于检索日志的,列一下需求:

  1. 我们将收集日志发送到消息中间件中(可以是kafka、rocketmq),消息中间件这块不介绍,选择玩的比较溜的就可以了
  2. 系统产生日志尽量不要影响接口的效率
  3. 带宽有限的情况下,发送日志也尽量不要去影响业务
  4. 日志尽量低延次,产生的日志,尽量在生成之后1分钟后可以检索到
  5. 检索日志功能要能够快速响应

关于上面几点,我们需要做的:日志发送的地方进行改造,引入消息中间件,将日志异步发送到消息中间件中,查询的地方采用elasticsearch,日志系统需要订阅消息中间件中的日志,然后丢给elasticsearch建索引,方便快速检索,咱们来一点点的介绍。

日志发送端的改造

日志是有业务系统产生的,一个请求过来的时候会产生很多日志,日志产生时,我们尽量减少日志输出对业务耗时的影响,我们的过程如下:

  1. 业务系统内部引用一个线程池来异步处理日志,线程池内部可以使用一个容量稍微大一点的阻塞队列
  2. 业务系统将日志丢给线程池进行处理
  3. 线程池中将需要处理的日志先压缩一下,然后发送至mq

线程池的使用可以参考:JAVA线程池,这一篇就够了

引入mq存储日志

业务系统将日志先发送到mq中,后面由其他消费者订阅进行消费。日志量比较大的,对mq的要求也比较高,可以选择kafka,业务量小的,也可以选取activemq。

使用elasticsearch来检索日志

elasticsearch(以下简称es)是一个全文检索工具,具体详情可以参考其官网相关文档。使用它来检索数据效率非常高。日志系统中需要我们开发一个消费端来拉取mq中的消息,将其存储到es中方便快速检索,关于这块有几点说一下:

  1. 建议按天在es中建立数据库,日质量非常大的,也可以按小时建立数据库。查询的时候,时间就是必选条件了,这样可以快速让es定位到日志库进行检索,提升检索效率
  2. 日志常见的需要收集的信息:trace_id、时间、日志级别、类、方法、url、调用的接口开始时间、调用接口的结束时间、接口耗时、接口状态码、异常信息、日志信息等等,可以按照这些在es中建立索引,方便检索。

日志监控报警

日志监控报警是非常重要的,这个必须要有,日志系统中需要开发监控报警功能,这块我们可以做成通过页面配置的方式,支持报警规则的配置,如日志中产生了某些异常、接口响应时间大于多少、接口返回状态码404等异常信息的时候能够报警,具体的报警可以是语音电话、短信通知、钉钉机器人报警等等,这些也做成可以配置的。

日志监控模块从mq中拉取日志,然后去匹配我们启用的一些规则进行报警。

结构图如下

关于搭建日志中遇到的一些痛点,可以加我微信itsoku交流。

构建日志系统需要用到的知识点

  1. java中线程池的使用
  2. ThreadLocal、InheritableThreadLocal(通俗易懂)
  3. elasticsearch,可以参考其官方文档
  4. mq

java高并发系列目录

  1. 第1天:必须知道的几个概念
  2. 第2天:并发级别
  3. 第3天:有关并行的两个重要定律
  4. 第4天:JMM相关的一些概念
  5. 第5天:深入理解进程和线程
  6. 第6天:线程的基本操作
  7. 第7天:volatile与Java内存模型
  8. 第8天:线程组
  9. 第9天:用户线程和守护线程
  10. 第10天:线程安全和synchronized关键字
  11. 第11天:线程中断的几种方式
  12. 第12天JUC:ReentrantLock重入锁
  13. 第13天:JUC中的Condition对象
  14. 第14天:JUC中的LockSupport工具类,必备技能
  15. 第15天:JUC中的Semaphore(信号量)
  16. 第16天:JUC中等待多线程完成的工具类CountDownLatch,必备技能
  17. 第17天:JUC中的循环栅栏CyclicBarrier的6种使用场景
  18. 第18天:JAVA线程池,这一篇就够了
  19. 第19天:JUC中的Executor框架详解1
  20. 第20天:JUC中的Executor框架详解2
  21. 第21天:java中的CAS,你需要知道的东西
  22. 第22天:JUC底层工具类Unsafe,高手必须要了解
  23. 第23天:JUC中原子类,一篇就够了
  24. 第24天:ThreadLocal、InheritableThreadLocal(通俗易懂)
  25. 第25天:掌握JUC中的阻塞队列
  26. 第26篇:学会使用JUC中常见的集合,常看看!
  27. 第27天:实战篇,接口性能提升几倍原来这么简单

java高并发系列连载中,总计估计会有四五十篇文章。

跟着阿里p7学并发,微信公众号:javacode2018

file

正文到此结束
本文目录